34 推导麦克斯韦方程

黄色表示原文中的重点语句; 红色表示 "新增配图" 或者 "对原文细节错误进行修正"; 蓝色表示我自己的一些见解; 绿色表示一些疑问;

麦克斯韦方程组4个方程可以描述出电磁现象所有的规律,但它不是最基本的。

利用电场、磁场的定义方程、场论中的高斯定理、斯托克斯定理,相对论中的洛伦兹变换,可以推导出麦克斯韦4个方程。

导出静电场 \(\overrightarrow{E'}\) 的旋度

对于静止电荷 \(o\) 点,带有电荷 \(q\) ,在周围产生的的静电场 \(\overrightarrow{E'}\) ,对电场定义方程

\[ \begin{equation}\nonumber \overrightarrow{E'} = f\ \dfrac{1}{\Omega^2}\ \dfrac{d\Omega}{dt}\ \dfrac{\vec{r}}{r^3} \end{equation} \]

点击展开注解:关于上式中的 \(f\)

直接求旋度,注意,式中右边仅 \(\dfrac{\vec{r}}{r^3}\) 是变量,得:

\[ \begin{equation}\nonumber \overrightarrow{\nabla} \times \overrightarrow{E'} = \vec{0} \end{equation} \]

上式可以分解为以下三个分式:

\[ \begin{align} \dfrac{\partial E_z'}{\partial y'} - \dfrac{\partial E_y'}{\partial z'} &= 0 \nonumber \\ \dfrac{\partial E_x'}{\partial z'} - \dfrac{\partial E_z'}{\partial x'} &= 0 \nonumber \\ \dfrac{\partial E_y'}{\partial x'} - \dfrac{\partial E_x'}{\partial y'} &= 0 \nonumber \end{align} \]

导出静电场 \(\overrightarrow{E'}\) 的散度

对静电场定义方程

\[ \begin{equation}\nonumber \overrightarrow{E'} = f\ \dfrac{1}{\Omega^2}\ \dfrac{d\Omega}{dt}\ \dfrac{\vec{r}}{r^3} \end{equation} \]

直接求散度,注意式中右边仅 \(\dfrac{\vec{r}}{r^3}\) 是变量,得:

\[ \begin{equation}\nonumber \overrightarrow{\nabla} \cdot \overrightarrow{E'} = 0 \end{equation} \]

上式中的 \(r\) 是包围 \(o\) 点的高斯球面 \(s\) 的半径,在 \(r\) 趋近于零【也可以说高斯球面上的考察点——空间点 \(p\) 无限趋近于电荷 \(o\) 点】,且 \(o\) 点可以看成一个无限小的带电球体的情况下,式子出现了 \(0/0\) 的情况,利用狄拉克 \(\delta\) 函数,可以得到:

\[ \begin{equation}\nonumber \overrightarrow{\nabla} \cdot \overrightarrow{E'} = \dfrac{\partial E_x'}{\partial x'} + \dfrac{\partial E_y'}{\partial y'} + \dfrac{\partial E_z'}{\partial z'} = \dfrac{\rho'}{\varepsilon_0} \end{equation} \]

\(\rho'\) 是包围电荷 \(o\) 点的高斯球面 \(s\)\(s\) 的体积非常小,无限接近于 \(o\) 点】内电荷的密度,\(\varepsilon_0\) 是真空介电常数。

我们需要注意的是,如果 \(o\) 点在高斯球面 \(s\) 外,\(s\) 没有包围 \(o\) 点,其散度一直是零。

导出运动电场 \(\overrightarrow{E}\) 的高斯定理

设想电荷 \(o\) 点静止在 \(s'\) 系里,带有的电荷 \(q\) 虽然是一个不变量,但是电荷 \(q\)\(s\) 系中是以匀速度 \(\vec{v}\) 沿 \(x\) 轴正方向直线运动,按照相对论的运动导致空间收缩,其体积要收缩到 \(\dfrac{1}{\gamma}\) 为相对论因子】倍, 相应的 \(q\) 的电荷密度要增大到 \(\gamma\) 倍。

所以,\(q\)\(s\) 系中密度 \(\rho\) 要比 \(s'\) 系中密度 \(\rho\) 增大一个相对论因子 \(\gamma\)

\[ \begin{equation}\nonumber \rho = \gamma\ \rho' \end{equation} \]

电荷 \(q\)\(s\) 系中是以匀速度 \(\vec{v}\) 【标量为 \(v\) 】沿 \(x\) 轴正方向在直线运动,所以有电流密度:

\[ \vec{J} = \rho\ v\ \vec{i} = \gamma\ \rho'\ v\ \vec{i} \]

\(\vec{i}\) 是沿 \(x\) 轴的单位矢量。

由洛伦兹正变换的 \(x' = \gamma\ (x - v\ t)\) 得到 \(\dfrac{\partial x'}{\partial x} = \gamma\) ,再由电场的相对论变换 \(E_x = E_x'\) , \(E_y = \gamma\ E_y'\) , \(\ E_z = \gamma\ E_z'\) ,,,以及静电场 \(\overrightarrow{E'}\) 的散度:

\[ \begin{equation}\nonumber \overrightarrow{\nabla} \cdot \overrightarrow{E'} = \dfrac{\partial E_x'}{\partial x'} + \dfrac{\partial E_y'}{\partial y'} + \dfrac{\partial E_z'}{\partial z'} = \dfrac{\rho'}{\varepsilon_0} \end{equation} \]

可以得出运动电场 \(\overrightarrow{E}\) 的高斯定理:

\[ \begin{equation}\nonumber \begin{aligned} \overrightarrow{\nabla} \cdot \overrightarrow{E} &= \dfrac{\partial E_x}{\partial x} + \dfrac{\partial E_y}{\partial y} + \dfrac{\partial E_z}{\partial z} \\ &= \gamma\ (\dfrac{\partial E_x'}{\partial x'} + \dfrac{\partial E_y'}{\partial y'} + \dfrac{\partial E_z'}{\partial z'}) \\ &= \gamma\ \dfrac{\rho'}{\varepsilon_0} \\ &= \dfrac{\rho}{\varepsilon_0} \end{aligned} \end{equation} \]

导出磁场的高斯定理

利用相对论洛伦兹变换得到的微分算符 \(\dfrac{\partial}{\partial y} = \dfrac{\partial}{\partial y'}\)\(\dfrac{\partial}{\partial z} = \dfrac{\partial}{\partial z'}\)

由前面的空间点 \(p\) 处磁场 \(\vec{B}\) 和电场 \(\vec{E}\) 满足的关系:

\[ \begin{align} B_x &= 0 \nonumber \\ B_y &= \dfrac{v}{c^2}\ E_z \nonumber \\ B_z &= -\ \dfrac{v}{c^2}\ E_y \nonumber \end{align} \]

由于我们把考察点定在空间 \(p\) 点上,而不是电荷 \(o\) 点上,所以上式是左手螺旋关系。再加静电场 \(\overrightarrow{E'}\) 的旋度的第一式

\[ \begin{equation}\nonumber \dfrac{\partial E_z'}{\partial y'} - \dfrac{\partial E_y'}{\partial z'} = 0 \end{equation} \]

再加电场的相对论变换公式

\[ \begin{align} \gamma\ E_z' &= E_z \nonumber \\ \gamma\ E_y' &= E_y \nonumber \end{align} \]

可以导出磁场的高斯定理:

\[ \begin{equation}\nonumber \begin{aligned} \overrightarrow{\nabla} \cdot \overrightarrow{B} &= \dfrac{\partial B_x}{\partial x} + \dfrac{\partial B_y}{\partial y} + \dfrac{\partial B_z}{\partial z} \\ &= 0 + \dfrac{\partial (\dfrac{v}{c^2}\ E_z)}{\partial y} - \dfrac{\partial (\dfrac{v}{c^2}\ E_y)}{\partial z} \\ &= 0 + \dfrac{\partial (\dfrac{v}{c^2}\ \gamma\ E_z')}{\partial y'} - \dfrac{\partial (\dfrac{v}{c^2}\ \gamma\ E_y')}{\partial z'} \\ &= \dfrac{v}{c^2}\ \gamma\ (\dfrac{\partial E_z'}{\partial y'} - \dfrac{\partial E_y'}{\partial z'}) \\ &= 0 \end{aligned} \end{equation} \]

导出法拉第电磁感应定理

由静电场 \(\overrightarrow{E'}\) 的旋度第一式

\[ \begin{equation}\nonumber \dfrac{\partial E_z'}{\partial y'} - \dfrac{\partial E_y'}{\partial z'} = 0 \end{equation} \]

由电场的相对论变换 \(E_z' = \dfrac{1}{\gamma}\ E_z\)\(E_y' = \dfrac{1}{\gamma}\ E_y\)\(\partial y' = \partial y\)\(\partial z' = \partial z\) ,导出:

\[ \begin{equation}\nonumber \dfrac{1}{\gamma}\ \dfrac{\partial E_z}{\partial y} - \dfrac{1}{\gamma}\ \dfrac{\partial E_y}{\partial z} = \dfrac{1}{\gamma}\ (\dfrac{\partial E_z}{\partial y} - \dfrac{\partial E_y}{\partial z}) = 0 \end{equation} \]

所以,

\[ \begin{equation}\nonumber \dfrac{\partial E_z}{\partial y} - \dfrac{\partial E_y}{\partial z} = 0 \end{equation} \]

由静电场 \(\overrightarrow{E'}\) 的旋度第二式

\[ \begin{equation}\nonumber \dfrac{\partial E_x'}{\partial z'} - \dfrac{\partial E_z'}{\partial x'} = 0 \end{equation} \]

由电场的相对论变换 \(E_x' = E_x\)\(E_z' = \dfrac{1}{\gamma}\ E_z\)\(\partial z' = \partial z\) ,由洛伦兹正变换 \(x' = \gamma\ (x - v\ t)\) 求偏微分得到的 \(\dfrac{1}{\partial x'} = \dfrac{1}{\gamma}\ \dfrac{1}{\partial x}\) ,导出:

\[ \begin{align} &\dfrac{\partial E_x}{\partial z} - \dfrac{1}{\gamma^2}\ \dfrac{\partial E_z}{\partial x} = 0 \nonumber \\ &\dfrac{\partial E_x}{\partial z} - (1 - \dfrac{v^2}{c^2})\ \dfrac{\partial E_z}{\partial x} = 0 \nonumber \\ &\dfrac{\partial E_x}{\partial z} - \dfrac{\partial E_z}{\partial x} = - \dfrac{v^2}{c^2}\ \dfrac{\partial E_z}{\partial x} \nonumber \end{align} \]

由速度定义 \(v = \dfrac{dx}{dt}\) 导出

\[ \begin{equation}\nonumber v\ \dfrac{\partial}{\partial x} = \dfrac{\partial}{\partial t} \end{equation} \]

所以:

\[ \begin{equation}\nonumber \dfrac{\partial E_x}{\partial z} - \dfrac{\partial E_z}{\partial x} = - \dfrac{v}{c^2}\ \dfrac{\partial E_z}{\partial t} \end{equation} \]

由空间点 \(p\) 处的磁场 \(\vec{B}\) 和电场 \(\vec{E}\) 满足的关系式

\[ \begin{equation}\nonumber B_y = \dfrac{v}{c^2}\ E_z \end{equation} \]

得到:

\[ \begin{equation}\nonumber \dfrac{\partial E_x}{\partial z} - \dfrac{\partial E_z}{\partial x} = -\ \dfrac{\partial B_y}{\partial t} \end{equation} \]

由静电场 \(\overrightarrow{E'}\) 的旋度第三式

\[ \begin{equation}\nonumber \dfrac{\partial E_y'}{\partial x'} - \dfrac{\partial E_x'}{\partial y'} = 0 \end{equation} \]

由电场的相对论变换 \(E_x' = E_x\)\(E_y' = \dfrac{1}{\gamma}\ E_y\) ,再由以上的洛伦兹正变换的微分算符 得到的 \(\dfrac{1}{\partial x'} = \dfrac{1}{\gamma}\ \dfrac{1}{\partial x}\)\(\partial y' = \partial y\)

得到:

\[ \begin{align} \dfrac{1}{\gamma^2}\ \dfrac{\partial E_y}{\partial x} - \dfrac{\partial E_x}{\partial y} = 0 \nonumber \\ (1 - \dfrac{v^2}{c^2})\ \dfrac{\partial E_y}{\partial x} - \dfrac{\partial E_x}{\partial y} = 0 \nonumber \\ \dfrac{\partial E_y}{\partial x} - \dfrac{\partial E_x}{\partial y} = \dfrac{v^2}{c^2}\ \dfrac{\partial E_y}{\partial x} \nonumber \end{align} \]

由速度定义得到的

\[ \begin{equation}\nonumber v\ \dfrac{\partial}{\partial x} = \dfrac{\partial}{\partial t} \end{equation} \]

得到:

\[ \begin{equation}\nonumber \dfrac{\partial E_y}{\partial x} - \dfrac{\partial E_x}{\partial y} = \dfrac{v}{c^2}\ \dfrac{\partial E_y}{\partial t} \end{equation} \]

由空间点 \(p\) 处的电场 \(\vec{E}\) 和磁场 \(\vec{B}\) 满足的关系

\[ B_z = -\ \dfrac{v}{c^2}\ E_y \]

中,得到:

\[ \begin{equation}\nonumber \dfrac{\partial E_y}{\partial x} - \dfrac{\partial E_x}{\partial y} = -\ \dfrac{\partial B_z}{\partial t} \end{equation} \]

由以上的推导加托克斯定理得出法拉第电磁感应方程:

\[ \begin{equation}\nonumber \begin{aligned} \overrightarrow{\nabla} \times \overrightarrow{E} &= (\dfrac{\partial E_z}{\partial y} - \dfrac{\partial E_y}{\partial z})\ \vec{i} + (\dfrac{\partial E_x}{\partial z} - \dfrac{\partial E_z}{\partial x})\ \vec{j} + (\dfrac{\partial E_y}{\partial x} - \dfrac{\partial E_x}{\partial y})\ \vec{k} \\ &= 0\ \vec{i} - \dfrac{\partial B_y}{\partial t}\ \vec{j} - \dfrac{\partial B_z}{\partial t}\ \vec{k} \\ &= -\ \dfrac{\partial B_x}{\partial t} \vec{i} - \dfrac{\partial B_y}{\partial t} \vec{j} - \dfrac{\partial B_z}{\partial t} \vec{k} \\ &= -\ \dfrac{\partial \vec{B}}{\partial t} \end{aligned} \end{equation} \]

导出电流和变化电场产生磁场

由空间点 \(p\) 处的电场 \(\vec{E}\) 和磁场 \(\vec{B}\) 满足的关系式

\[ \begin{align} B_y &= \dfrac{v}{c^2}\ E_z \nonumber \\ B_z &= -\ \dfrac{v}{c^2}\ E_y \nonumber \end{align} \]

可以得出:

\[ \begin{equation}\nonumber \begin{aligned} \dfrac{\partial B_z}{\partial y} - \dfrac{\partial B_y}{\partial z} &= -\ \dfrac{\partial (\dfrac{v}{c^2}\ E_y)}{\partial y} - \dfrac{\partial (\dfrac{v}{c^2}\ E_z)}{\partial z} \\ &= -\ \dfrac{v}{c^2}\ (\dfrac{\partial E_y}{\partial y} + \dfrac{\partial E_z}{\partial z}) \\ &= -\ \mu_0\ \varepsilon_0\ v\ (\dfrac{\rho}{\varepsilon_0} - \dfrac{\partial E_x}{\partial x}) \end{aligned} \end{equation} \]

注意,\(\mu_0\ \varepsilon_0 = \dfrac{1}{c^2}\)\(\rho\) 是电荷 \(o\) 点在 \(s\) 系里电荷体密度,这里用到了运动电场 \(\vec{E}\) 的高斯定理

\[ \begin{equation}\nonumber \overrightarrow{\nabla} \cdot \overrightarrow{E} = \dfrac{\partial E_x}{\partial x} + \dfrac{\partial E_y}{\partial y} + \dfrac{\partial E_z}{\partial z} = \dfrac{\rho}{\varepsilon_0} \end{equation} \]

所以,

\[ -\ \mu_0\ \varepsilon_0\ v\ (\dfrac{\rho}{\varepsilon_0} - \dfrac{\partial E_x}{\partial x}) = -\ \mu_0\ v\ \rho + \mu_0\ \varepsilon_0\ v\ \dfrac{\partial E_x}{\partial x} \]

以上是从空间点 \(p\) 处考察得出的,由于电荷 \(o\) 点的运动速度 \(v\)\(p\) 点运动速度 \(- v\) 正好相反。

\(\mu_0\ v\ \rho\) 是电流,上式如果表示的是电流和变化磁场产生磁场,则负号就要去掉。再由速度定义得到的

\[ \begin{equation}\nonumber \dfrac{v}{\partial x} = \dfrac{1}{\partial t} \end{equation} \]

所以,上式的矢量式可以写为:

\[ \begin{equation}\nonumber \mu_0\ \vec{J} + \mu_0\ \varepsilon_0\ \dfrac{\partial E_x}{\partial t} \vec{i} \end{equation} \]

\(\vec{i}\) 沿 \(x\) 轴的单位矢量,\(\vec{J}\) 是电流。

点击展开修正:这里的 \(\vec{J}\) 应该是指电流密度。

\(B_x = 0\)\(B_z = -\ \dfrac{v}{c^2}\ E_y\)\(\dfrac{v}{\partial x} = \dfrac{1}{\partial t}\) ,所以:

\[ \begin{equation}\nonumber \begin{aligned} \dfrac{\partial B_x}{\partial z} - \dfrac{\partial B_z}{\partial x} &= - \dfrac{\partial B_z}{\partial x} \\ &= \dfrac{v}{c^2}\ \dfrac{\partial E_y}{\partial x} \\ &= \dfrac{1}{c^2}\ \dfrac{\partial E_y}{\partial t} \\ &= \mu_0\ \varepsilon_0\ \dfrac{\partial E_y}{\partial t} \end{aligned} \end{equation} \]

\(B_x = 0\)\(B_y = \dfrac{v}{c^2}\ E_z\)\(\dfrac{v}{\partial x} = \dfrac{1}{\partial t}\) ,所以:

\[ \begin{equation}\nonumber \begin{aligned} \dfrac{\partial B_y}{\partial x} - \dfrac{\partial B_x}{\partial y} &= \dfrac{\partial B_y}{\partial x} \\ &= \dfrac{v}{c^2}\ \dfrac{\partial E_z}{\partial x} \\ &= \dfrac{1}{c^2}\ \dfrac{\partial E_z}{\partial t} \\ &= \mu_0\ \varepsilon_0\ \dfrac{\partial E_z}{\partial t} \end{aligned} \end{equation} \]

由以上推理加斯托克斯定理,我们得到了麦克斯韦方程中的电流和运动电荷产生磁场:

\[ \begin{equation}\nonumber \begin{aligned} \overrightarrow{\nabla} \times \overrightarrow{B} &= (\dfrac{\partial B_z}{\partial y} - \dfrac{\partial B_y}{\partial z})\ \vec{i} + (\dfrac{\partial B_x}{\partial z} - \dfrac{\partial B_z}{\partial x})\ \vec{j} + (\dfrac{\partial B_y}{\partial x} - \dfrac{\partial B_x}{\partial y})\ \vec{k} \\ &= (\mu_0\ J + \mu_0\ \varepsilon_0\ \dfrac{\partial E_x}{\partial t})\ \vec{i} + (\mu_0\ \varepsilon_0\ \dfrac{\partial E_y}{\partial t})\ \vec{j} + (\mu_0\ \varepsilon_0\ \dfrac{\partial E_z}{\partial t})\ \vec{k} \\ &= \mu_0\ \vec{J} + \mu_0\ \varepsilon_0\ \dfrac{\partial \vec{E}}{\partial t} \end{aligned} \end{equation} \]