_由 **<a href="mailto:[email protected]" target="_blank" rel="noopener noreferrer">RainDream</a>** 添加_
</div>
直接求旋度,注意,式中右边仅 \(\dfrac{\vec{r}}{r^3}\) 是变量,得:
\[
\begin{equation}\nonumber
\overrightarrow{\nabla} \times \overrightarrow{E'} = \vec{0}
\end{equation}
\]
上式可以分解为以下三个分式:
\[
\begin{align}
\dfrac{\partial E_z'}{\partial y'} - \dfrac{\partial
E_y'}{\partial z'} &= 0 \nonumber \\
\dfrac{\partial E_x'}{\partial z'} - \dfrac{\partial
E_z'}{\partial x'} &= 0 \nonumber \\
\dfrac{\partial E_y'}{\partial x'} - \dfrac{\partial
E_x'}{\partial y'} &= 0 \nonumber
\end{align}
\]
导出静电场 \(\overrightarrow{E'}\) 的散度
对静电场定义方程
\[
\begin{equation}\nonumber
\overrightarrow{E'} = f\ \dfrac{1}{\Omega^2}\ \dfrac{d\Omega}{dt}\
\dfrac{\vec{r}}{r^3}
\end{equation}
\]
直接求散度,注意式中右边仅 \(\dfrac{\vec{r}}{r^3}\) 是变量,得:
\[
\begin{equation}\nonumber
\overrightarrow{\nabla} \cdot \overrightarrow{E'} = 0
\end{equation}
\]
上式中的 \(r\) 是包围 \(o\) 点的高斯球面 \(s\) 的半径,在 \(r\)
趋近于零【也可以说高斯球面上的考察点——空间点 \(p\) 无限趋近于电荷 \(o\) 点】,且 \(o\)
点可以看成一个无限小的带电球体的情况下,式子出现了 \(0/0\) 的情况,利用狄拉克 \(\delta\) 函数,可以得到:
\[
\begin{equation}\nonumber
\overrightarrow{\nabla} \cdot \overrightarrow{E'} = \dfrac{\partial
E_x'}{\partial x'} + \dfrac{\partial E_y'}{\partial y'}
+ \dfrac{\partial E_z'}{\partial z'} =
\dfrac{\rho'}{\varepsilon_0}
\end{equation}
\]
\(\rho'\) 是包围电荷 \(o\) 点的高斯球面 \(s\) 【 \(s\) 的体积非常小,无限接近于 \(o\) 点】内电荷的密度,\(\varepsilon_0\) 是真空介电常数。
我们需要注意的是,如果 \(o\)
点在高斯球面 \(s\) 外,\(s\) 没有包围 \(o\) 点,其散度一直是零。
导出运动电场 \(\overrightarrow{E}\) 的高斯定理
设想电荷 \(o\) 点静止在 \(s'\) 系里,带有的电荷 \(q\) 虽然是一个不变量,但是电荷 \(q\) 在 \(s\) 系中是以匀速度 \(\vec{v}\) 沿 \(x\)
轴正方向直线运动,按照相对论的运动导致空间收缩,其体积要收缩到 \(\dfrac{1}{\gamma}\) 为相对论因子】倍,
相应的 \(q\) 的电荷密度要增大到 \(\gamma\) 倍。
所以,\(q\) 在 \(s\) 系中密度 \(\rho\) 要比 \(s'\) 系中密度 \(\rho\) 增大一个相对论因子 \(\gamma\)
\[
\begin{equation}\nonumber
\rho = \gamma\ \rho'
\end{equation}
\]
电荷 \(q\) 在 \(s\) 系中是以匀速度 \(\vec{v}\) 【标量为 \(v\) 】沿 \(x\)
轴正方向在直线运动,所以有电流密度:
\[
\vec{J} = \rho\ v\ \vec{i} = \gamma\ \rho'\ v\ \vec{i}
\]
\(\vec{i}\) 是沿 \(x\) 轴的单位矢量。
由洛伦兹正变换的 \(x' = \gamma\ (x - v\
t)\) 得到 \(\dfrac{\partial
x'}{\partial x} = \gamma\) ,再由电场的相对论变换 \(E_x = E_x'\) , \(E_y = \gamma\ E_y'\) , \(\ E_z = \gamma\ E_z'\) ,,,以及静电场
\(\overrightarrow{E'}\)
的散度:
\[
\begin{equation}\nonumber
\overrightarrow{\nabla} \cdot \overrightarrow{E'} = \dfrac{\partial
E_x'}{\partial x'} + \dfrac{\partial E_y'}{\partial y'}
+ \dfrac{\partial E_z'}{\partial z'} =
\dfrac{\rho'}{\varepsilon_0}
\end{equation}
\]
可以得出运动电场 \(\overrightarrow{E}\) 的高斯定理:
\[
\begin{equation}\nonumber
\begin{aligned}
\overrightarrow{\nabla} \cdot \overrightarrow{E} &= \dfrac{\partial
E_x}{\partial x} + \dfrac{\partial E_y}{\partial y} + \dfrac{\partial
E_z}{\partial z} \\
&= \gamma\ (\dfrac{\partial E_x'}{\partial x'} +
\dfrac{\partial E_y'}{\partial y'} + \dfrac{\partial
E_z'}{\partial z'}) \\
&= \gamma\ \dfrac{\rho'}{\varepsilon_0} \\
&= \dfrac{\rho}{\varepsilon_0}
\end{aligned}
\end{equation}
\]
导出磁场的高斯定理
利用相对论洛伦兹变换得到的微分算符 \(\dfrac{\partial}{\partial y} =
\dfrac{\partial}{\partial y'}\) ,\(\dfrac{\partial}{\partial z} =
\dfrac{\partial}{\partial z'}\) ,
由前面的空间点 \(p\) 处磁场 \(\vec{B}\) 和电场 \(\vec{E}\) 满足的关系:
\[
\begin{align}
B_x &= 0 \nonumber \\
B_y &= \dfrac{v}{c^2}\ E_z \nonumber \\
B_z &= -\ \dfrac{v}{c^2}\ E_y \nonumber
\end{align}
\]
由于我们把考察点定在空间 \(p\)
点上,而不是电荷 \(o\)
点上,所以上式是左手螺旋关系。再加静电场 \(\overrightarrow{E'}\)
的旋度的第一式
\[
\begin{equation}\nonumber
\dfrac{\partial E_z'}{\partial y'} - \dfrac{\partial
E_y'}{\partial z'} = 0
\end{equation}
\]
再加电场的相对论变换公式
\[
\begin{align}
\gamma\ E_z' &= E_z \nonumber \\
\gamma\ E_y' &= E_y \nonumber
\end{align}
\]
可以导出磁场的高斯定理:
\[
\begin{equation}\nonumber
\begin{aligned}
\overrightarrow{\nabla} \cdot \overrightarrow{B} &= \dfrac{\partial
B_x}{\partial x} + \dfrac{\partial B_y}{\partial y} + \dfrac{\partial
B_z}{\partial z} \\
&= 0 + \dfrac{\partial (\dfrac{v}{c^2}\ E_z)}{\partial y} -
\dfrac{\partial (\dfrac{v}{c^2}\ E_y)}{\partial z} \\
&= 0 + \dfrac{\partial (\dfrac{v}{c^2}\ \gamma\
E_z')}{\partial y'} - \dfrac{\partial (\dfrac{v}{c^2}\ \gamma\
E_y')}{\partial z'} \\
&= \dfrac{v}{c^2}\ \gamma\ (\dfrac{\partial E_z'}{\partial
y'} - \dfrac{\partial E_y'}{\partial z'}) \\
&= 0
\end{aligned}
\end{equation}
\]
导出法拉第电磁感应定理
由静电场 \(\overrightarrow{E'}\)
的旋度第一式
\[
\begin{equation}\nonumber
\dfrac{\partial E_z'}{\partial y'} - \dfrac{\partial
E_y'}{\partial z'} = 0
\end{equation}
\]
由电场的相对论变换 \(E_z' =
\dfrac{1}{\gamma}\ E_z\) ,\(E_y' =
\dfrac{1}{\gamma}\ E_y\) ,\(\partial
y' = \partial y\) ,\(\partial
z' = \partial z\) ,导出:
\[
\begin{equation}\nonumber
\dfrac{1}{\gamma}\ \dfrac{\partial E_z}{\partial y} - \dfrac{1}{\gamma}\
\dfrac{\partial E_y}{\partial z} = \dfrac{1}{\gamma}\ (\dfrac{\partial
E_z}{\partial y} - \dfrac{\partial E_y}{\partial z}) = 0
\end{equation}
\]
所以,
\[
\begin{equation}\nonumber
\dfrac{\partial E_z}{\partial y} - \dfrac{\partial E_y}{\partial z} = 0
\end{equation}
\]
由静电场 \(\overrightarrow{E'}\)
的旋度第二式
\[
\begin{equation}\nonumber
\dfrac{\partial E_x'}{\partial z'} - \dfrac{\partial
E_z'}{\partial x'} = 0
\end{equation}
\]
由电场的相对论变换 \(E_x' =
E_x\) ,\(E_z' = \dfrac{1}{\gamma}\
E_z\) ,\(\partial z' = \partial
z\) ,由洛伦兹正变换 \(x' = \gamma\
(x - v\ t)\) 求偏微分得到的 \(\dfrac{1}{\partial x'} = \dfrac{1}{\gamma}\
\dfrac{1}{\partial x}\) ,导出:
\[
\begin{align}
&\dfrac{\partial E_x}{\partial z} - \dfrac{1}{\gamma^2}\
\dfrac{\partial E_z}{\partial x} = 0 \nonumber \\
&\dfrac{\partial E_x}{\partial z} - (1 - \dfrac{v^2}{c^2})\
\dfrac{\partial E_z}{\partial x} = 0 \nonumber \\
&\dfrac{\partial E_x}{\partial z} - \dfrac{\partial E_z}{\partial x}
= - \dfrac{v^2}{c^2}\ \dfrac{\partial E_z}{\partial x} \nonumber
\end{align}
\]
由速度定义 \(v = \dfrac{dx}{dt}\)
导出
\[
\begin{equation}\nonumber
v\ \dfrac{\partial}{\partial x} = \dfrac{\partial}{\partial t}
\end{equation}
\]
所以:
\[
\begin{equation}\nonumber
\dfrac{\partial E_x}{\partial z} - \dfrac{\partial E_z}{\partial x} = -
\dfrac{v}{c^2}\ \dfrac{\partial E_z}{\partial t}
\end{equation}
\]
由空间点 \(p\) 处的磁场 \(\vec{B}\) 和电场 \(\vec{E}\) 满足的关系式
\[
\begin{equation}\nonumber
B_y = \dfrac{v}{c^2}\ E_z
\end{equation}
\]
得到:
\[
\begin{equation}\nonumber
\dfrac{\partial E_x}{\partial z} - \dfrac{\partial E_z}{\partial x} = -\
\dfrac{\partial B_y}{\partial t}
\end{equation}
\]
由静电场 \(\overrightarrow{E'}\)
的旋度第三式
\[
\begin{equation}\nonumber
\dfrac{\partial E_y'}{\partial x'} - \dfrac{\partial
E_x'}{\partial y'} = 0
\end{equation}
\]
由电场的相对论变换 \(E_x' =
E_x\) ,\(E_y' = \dfrac{1}{\gamma}\
E_y\) ,再由以上的洛伦兹正变换的微分算符 得到的 \(\dfrac{1}{\partial x'} = \dfrac{1}{\gamma}\
\dfrac{1}{\partial x}\) ,\(\partial
y' = \partial y\) ,
得到:
\[
\begin{align}
\dfrac{1}{\gamma^2}\ \dfrac{\partial E_y}{\partial x} - \dfrac{\partial
E_x}{\partial y} = 0 \nonumber \\
(1 - \dfrac{v^2}{c^2})\ \dfrac{\partial E_y}{\partial x} -
\dfrac{\partial E_x}{\partial y} = 0 \nonumber \\
\dfrac{\partial E_y}{\partial x} - \dfrac{\partial E_x}{\partial y} =
\dfrac{v^2}{c^2}\ \dfrac{\partial E_y}{\partial x} \nonumber
\end{align}
\]
由速度定义得到的
\[
\begin{equation}\nonumber
v\ \dfrac{\partial}{\partial x} = \dfrac{\partial}{\partial t}
\end{equation}
\]
得到:
\[
\begin{equation}\nonumber
\dfrac{\partial E_y}{\partial x} - \dfrac{\partial E_x}{\partial y} =
\dfrac{v}{c^2}\ \dfrac{\partial E_y}{\partial t}
\end{equation}
\]
由空间点 \(p\) 处的电场 \(\vec{E}\) 和磁场 \(\vec{B}\) 满足的关系
\[
B_z = -\ \dfrac{v}{c^2}\ E_y
\]
中,得到:
\[
\begin{equation}\nonumber
\dfrac{\partial E_y}{\partial x} - \dfrac{\partial E_x}{\partial y} = -\
\dfrac{\partial B_z}{\partial t}
\end{equation}
\]
由以上的推导加托克斯定理得出法拉第电磁感应方程:
\[
\begin{equation}\nonumber
\begin{aligned}
\overrightarrow{\nabla} \times \overrightarrow{E} &=
(\dfrac{\partial E_z}{\partial y} - \dfrac{\partial E_y}{\partial z})\
\vec{i} + (\dfrac{\partial E_x}{\partial z} - \dfrac{\partial
E_z}{\partial x})\ \vec{j} + (\dfrac{\partial E_y}{\partial x} -
\dfrac{\partial E_x}{\partial y})\ \vec{k} \\
&= 0\ \vec{i} - \dfrac{\partial B_y}{\partial t}\ \vec{j} -
\dfrac{\partial B_z}{\partial t}\ \vec{k} \\
&= -\ \dfrac{\partial B_x}{\partial t} \vec{i} - \dfrac{\partial
B_y}{\partial t} \vec{j} - \dfrac{\partial B_z}{\partial t} \vec{k} \\
&= -\ \dfrac{\partial \vec{B}}{\partial t}
\end{aligned}
\end{equation}
\]
导出电流和变化电场产生磁场
由空间点 \(p\) 处的电场 \(\vec{E}\) 和磁场 \(\vec{B}\) 满足的关系式
\[
\begin{align}
B_y &= \dfrac{v}{c^2}\ E_z \nonumber \\
B_z &= -\ \dfrac{v}{c^2}\ E_y \nonumber
\end{align}
\]
可以得出:
\[
\begin{equation}\nonumber
\begin{aligned}
\dfrac{\partial B_z}{\partial y} - \dfrac{\partial B_y}{\partial z}
&= -\ \dfrac{\partial (\dfrac{v}{c^2}\ E_y)}{\partial y} -
\dfrac{\partial (\dfrac{v}{c^2}\ E_z)}{\partial z} \\
&= -\ \dfrac{v}{c^2}\ (\dfrac{\partial E_y}{\partial y} +
\dfrac{\partial E_z}{\partial z}) \\
&= -\ \mu_0\ \varepsilon_0\ v\ (\dfrac{\rho}{\varepsilon_0} -
\dfrac{\partial E_x}{\partial x})
\end{aligned}
\end{equation}
\]
注意,\(\mu_0\ \varepsilon_0 =
\dfrac{1}{c^2}\) ,\(\rho\)
是电荷 \(o\) 点在 \(s\) 系里电荷体密度,这里用到了运动电场
\(\vec{E}\) 的高斯定理
\[
\begin{equation}\nonumber
\overrightarrow{\nabla} \cdot \overrightarrow{E} = \dfrac{\partial
E_x}{\partial x} + \dfrac{\partial E_y}{\partial y} + \dfrac{\partial
E_z}{\partial z} = \dfrac{\rho}{\varepsilon_0}
\end{equation}
\]
所以,
\[
-\ \mu_0\ \varepsilon_0\ v\ (\dfrac{\rho}{\varepsilon_0} -
\dfrac{\partial E_x}{\partial x}) = -\ \mu_0\ v\ \rho + \mu_0\
\varepsilon_0\ v\ \dfrac{\partial E_x}{\partial x}
\]
以上是从空间点 \(p\)
处考察得出的,由于电荷 \(o\)
点的运动速度 \(v\) 和 \(p\) 点运动速度 \(- v\) 正好相反。
\(\mu_0\ v\ \rho\)
是电流,上式如果表示的是电流和变化磁场产生磁场,则负号就要去掉。再由速度定义得到的
\[
\begin{equation}\nonumber
\dfrac{v}{\partial x} = \dfrac{1}{\partial t}
\end{equation}
\]
所以,上式的矢量式可以写为:
\[
\begin{equation}\nonumber
\mu_0\ \vec{J} + \mu_0\ \varepsilon_0\ \dfrac{\partial E_x}{\partial t}
\vec{i}
\end{equation}
\]
\(\vec{i}\) 沿 \(x\) 轴的单位矢量,\(\vec{J}\) 是电流。
点击展开修正:这里的 \(\vec{J}\)
应该是指电流密度。